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Abstract—Globalization and the rapid increase in world trade 

have contributed to greater demand for international transport 

and logistics and, consequently, the expansion of the maritime 

industry, one of the oldest and most vital industries of the global 

economy, accounting for more than 80% of world trade. Over the 

last few years, the evolving digitization in the maritime industry 

has led to a significant increase in the number of cyber-attacks on 

ports and ships, and thus cyber risk management is considered as 

one of the main challenges for the sector. In this paper, we present 

the capabilities of a prediction engine that could be used as a 

decision support system for maritime cyber security personnel. By 

describing the integration of such engine with risk and 

econometric models, we draw perspectives for using such a tool 

into cyber ranges for training relevant port stakeholders in 

prioritizing their actions during a cyber-attack.  
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I. INTRODUCTION 

Despite the ever-growing adoption of networked technology 
in almost all areas of contemporary infrastructures, both a 
standardized technology plus a systematic methodology for 
testing and evaluation of such systems and related products from 
a cyber security perspective remain elusive. Pertinent traditional 
testing assumed that the behaviour of such networked systems is 
determined by the behaviour of their individual components; 
Therefore, traditional testing focused separately on each isolated 
component by emulating a static interface to the rest of the 
network. However, the behaviour of such systems is not 
determined solely from the behaviour of their individual 
components, but also by their highly complex interactions and 
interdependencies. 

Apart from testing, the security of contemporary networked 
infrastructure requires trained professionals and specialized 

tools, able to detect network vulnerabilities and to respond to 
cyber threats in real-time, analyse them, plus monitor and 
maintain the network’s integrity and secure function. Due to the 
ever-changing landscape of cyber threats, it is perceivable that 
cyber-security professionals require continuous, ever-lasting 
training. Additionally, the tools utilized by cyber-security 
experts require a robust, updatable design able to address the 
needs dictated by threats of a continuously evolving nature. 

Cyber ranges are an emerging technology promising to 
provide solutions to the above questions.  The National Institute 
of Standards and Technology defines cyber ranges as interactive 
and/or simulated representations of events of an organization’s 
local network, system, tools and applications [1][1]. Simply put, 
a cyber range is a virtual simulation environment for networks, 
able to incorporate elements like actual or simulated devices, 
virtual machines, software, webpages, simulated traffic etc. 
Both security professionals and the development of respective 
tools can benefit from such simulation environments. Cyber 
ranges can serve as virtual playgrounds for real-time testing of 
hands-on skills and tools utility in simulated cyber-attacks. 

In this work, we focus on cyber threats in the maritime 
domain. We propose a tool aiming to serve as a decision support 
system for maritime cyber security personnel during an ongoing 
simulated cyber-attack. The tool mainly serves as a prediction 
engine. The prediction engine aims at organizing the knowledge 
acquired from simulated cyber-range attack scenarios plus 
potentially any additional prior knowledge in a systematic 
statistical/probabilistic representation able to make predictions 
on the evolution of an ongoing or hypothetical cyber-attack. 
Combined with the output of infrastructure-specific risk-
quantification and econometric models, such a representation is 
expected to provide a comprehensive, systematic and queryable 
model of the simulated attack scenarios, facilitating educated 
decisions during a real time cyber-attack. 



 

 

The paper is organized as follows: Section II presents known 
related work in the field. Section III describes the proposed tool 
and its capabilities for providing probabilistic predictions on 
future cyber security events, while Section IV presents the 
integration of maritime specific risk estimation and econometric 
models to the output of the engine. The deployment of the 
proposed tool into a cyber range environment in the context of 
the Cyber-MAR project is described in Section V. Finally, 
conclusions are drawn in Section VI. 

II. RELATED WORK 

Network attack modelling has a long-standing history. 
Several approaches have been proposed, each one with its own 
merits and disadvantages. Attack graphs form a concrete class 
of such models, further categorized in rule-based [2] [3] and 
probability-based [4] approaches.  

Rule-based attack graphs aim to “provide an efficient 
representation and algorithmic tools to identify the possible 
cases system vulnerabilities can be exploited in a network” [5]. 
The cited references describe several attempts following this 
approach; it is stressed, however, that such approaches rely on a 
comprehensive and accurate knowledge of both the network 
under consideration plus its vulnerabilities. Additionally, any 
changes and/or updates on the network should also be reflected 
thoroughly in the respective models. Both these requirements 
are rarely feasible in practice. 

Probability-based attack graphs aim to map sensor (e.g. 
Intrusion Detection Systems, abbr. IDS) observable events to 
high level attack patterns using probabilistic modelling [6] [7] 
[8] [9] [10]. The approach seems not to rely so much on detailed 
knowledge of the network. However, the definition of high level 
attack patterns is not a trivial task and requires the involvement 
of domain experts. How much detail, or how to update these 
attack patterns remain open questions of active research. 

An alternative approach is to model the attacker’s behaviour 
in various terms, including intent, capability, opportunity etc 
[11] [12] [13]. Although the approach seems rational, its 
formalization is quite undeveloped. This is also evident on the 
development of corresponding methodologies which currently 
lack the maturity to provide robust models. 

We note that in any of the aforementioned methodologies, 
the kind of the infrastructure (e.g. port, factory etc) the network 
of interest relies in is expected to play an additional role in the 
designed model. It is reasonable to expect that different cyber 
threat events will be observed in a port than in a factory. In what 
follows, we are interested in modelling sequences of cyberthreat 
events pertaining to a port infrastructure. 

III. DESCRIPTION OF THE ENGINE 

As mentioned in the previous section, each network attack 
modelling methodology comes with its own merits and 
disadvantages. In this work, we draw mainly on the methods 
described in [6], for the following reasons: 

• The resulting prediction model does not rely on a 
detailed knowledge of the network of interest. 

• The resulting model is built in a straightforward way 
from the raw event sequences captured by robust and 

mature tools during the cyber-attack. Additionally, in 
order to make real-time predictions during an on-going 
cyber attack, it requires solely the up-to-the-moment 
captured sequence of events from the same tools. 

• Although training and using the resulting model does not 
require definition of higher-level attack patterns, the 
basic structure underlying the model (i.e. the suffix tree, 
which is described later in this section) consists in a 
compact representation of all acquired knowledge in 
terms of already observed (sub-) sequences of events. 
This enables a systematic consideration of various 
features of already observed event (sub-) sequences, 
facilitating the definition and detection of relevant 
higher-level attack patterns. 

The core idea of the proposed tool is to systematically model 
past knowledge on cyber-attack behaviour patterns, where the 
cyberattacks are simulated in a cyber range, employed with IDS 
sensors and Security Information and Event Management 
(SIEM) tools. The corresponding event logs are captured and 
recorded by the IDS sensors and the SIEM output events. In this 
section, we give precise definitions and present the 
mathematical and algorithmic basis of the engine. First, we draw 
a distinction between the notions of cybersecurity event and 
cybersecurity incident.   

In terms of the event logs provided by the IDS and SIEM 
modules, a cybersecurity event is a large and complex structure 
of information regarding a large variety of features of what can 
be defined as a cybersecurity event. These features include type 
of event, source and destination IPs, ports and protocols, among 
many others. A cybersecurity incident is a modelling term, 
which we use to refer to a subset of the information describing a 
cybersecurity event. The definition of this subset is made by 
modelling decisions. Including all available information on a 
cybersecurity event in this subset would be impractical for two 
reasons; First, it can be quite complicated to detect and model 
patterns in sequences of such rich and complex structures. Even 
if this is accomplished, it could be confusing to present all this 
information to a cybersecurity professional in a way that 
facilitates real time decision making. Second, it would most 
certainly require vast amounts of data to capture all the diversity 
in every (time-varying) feature.  Thus, what the engine will 
perceive as an incident is a modelling decision and is to be 
defined according to what practical purpose it is planned to 
serve, plus the availability of pertinent data. 

Useful alternative definitions of what the engine will 
perceive as an incident may be the following: 

• a triplet of (IDS_event_type, Source_IP, Dest_IP), 
where IDS_event_type is an IDS indication e.g. dns, 
fileinfo, flow, http, alert etc. 

• a triplet of (SIEM_event_type, Source_IP, Dest_IP), 
where   SIEM_event_type is an SIEM indication e.g. 
malware, zerologon attack, modicon quantum attack 
etc. 

A more generic model of an incident may also be the 
following, which takes into account subnetworks rather that 
specific IPs. 



 

 

Fig. 1. Single step inference  

• a triplet of (event_type, Source_subnetwork, 
Destination_subnetwork), where event_type is an SIEM 
or indication as above and Source_subnetwork, 
Destination_subnetwork may be the any subnetwork 
including the Operational Technology (OT) 
subnetwork, the ServersLAN, the Users_LAN, the 
DMZ etc. 

We note that the approach is general enough to enable 
consideration of a wide variety of possible definitions of the 
notion of an incident; apart from IDS and/or SIEM event-based 
definitions, any type of discrete event concerning the port 
infrastructure maybe included and/or combined with others. 

Once the notion of an incident has been defined in a useful 
and practical way, each incident will be matched to a code word, 
i.e., a string of characters. This enables the encoding of a 
sequence of incidents into a sequence of strings. The set of 
simulated attack sequences can then be represented compactly 
in a suffix tree structure [14], properly extended to handle 
sequences of strings instead of sequences of single characters. In 
what follows, we will demonstrate that such a representation 
models the knowledge that can be extracted in terms of attack 
behaviour patterns; these patterns essentially consist of incident 
(string) sub-sequences observed in the entire set of complete 
incident (string) sequences obtained by simulated cyber-attack 
scenarios. 

Apart from a compact representation, the suffix tree structure 
consists of a complete and computationally efficient (i.e. 
searching a subsequence of length n is O(n)) implementation of 
a Variable Length Markov Model (VLMM); Given a discrete set 
E of possible events, an attack is modelled by an ordered finite 

sequence �������
� . A VLMM considers all n-th order Markov 

models, i.e. the probabilities 

 �	
��
� � �|�� � ��, … , ����	��� � �	��� ,   

 where �� ∈ � ∀ � � 0, … , � � 1, �  1 (1) 

For more details and intuitive visualizations of the 
connection between VLMMs and Suffix Trees we refer to [6] 
[14]. Training a VLMM requires simply event sequences from 
simulated attack and is equivalent to finding the aforementioned 
corresponding Suffix Tree [6]. VLMMs have been shown to 
display good performance in predicting next attack steps [4] [6]. 
In our work, we have extended the classic suffix tree 
construction algorithm to be able to handle entire strings instead 
of single characters. This enlarges the number of different 
cybersecurity incidents the engine can take into consideration. 
Apart from inferring probabilities of possible next events as in 
[6], we have extended the inference algorithm to be able to 
answer more general queries considering multiple time steps 
into the future.  We showcase the inner-workings of the engine 
in the following two examples 

A. Example 1-Single step inference 

Using a cyber range with integrated IDS and SIEM modules, 
we have simulated a simple attack on a virtual port network 
including PLCs. IDS sensed events were fed into the SIEM 
module, which correlated them and produced higher-level alarm 
events. We repeated 5 dry-runs of the attacks varying the first 
affected asset and recorded the resulting SIEM alarms sequence. 
SIEM alarm incidents were encoded by the triplet 
(SIEM_event_type, Source_subnetwork, Destination_sub 
network) as described above.  

The resulting incident encodings and corresponding 
sequences are given in TABLE I.  

The resulting suffix tree and inference on an exemplary input 
are depicted in Fig. 1. 

The suffix tree encodes systematically all the raw knowledge 
on attack patterns (i.e. incident subsequences) from the 5 
simulated scenarios. For example, one can see that the 
subsequence…-c-d-… has been observed 4 times in past attacks 
by simply traversing the tree as the subsequence dictates; The 
children of the node reached by traversing the tree in that way 
also shows that out for the 4 times …-c-d-… has been observed, 
1 time was followed by a ‘d’, 1 time by a ‘c’ and 2 times by an 
‘e’. Note that each of these characters corresponds to an 
incident; In this way, we can use the engine as a real-time tool 
fed with the up-to-the-moment sequence of observed events and 

 



 

 

predicting possible next events based on previous knowledge. 
Apart from that, the engine may be used for off-line studies on 
patterns of observed incident (sub-) sequences.  

TABLE I.  INCIDENT ENCODING AND SEQUENCES 

Incident Encoding 

‘a’  : DMZ_to_SLAN/Policy violation, DNS 
update from external server detected on DST_IP 
‘b’ : SLAN_to_SLAN/Policy violation, DNS 
update from external server detected on DST_IP 
‘c’ : ULAN_to_SLAN/Policy violation, DNS 
update from external server detected on DST_IP 
‘d’ : ULAN_to_SLAN/Zerologon Attack 
detected  
‘e’ : OT_to_OT/Modicon Quantum attack 
attempt 

Encoded Incident 
(alarm) Sequences 
from XL-SIEM from 
5 simulated attacksa 
 

a-b-c-c-c-c-c-d-d-d-e-* 
b-c-d-e-* 
b-d-e-c-* 
b-c-d-c-e-* 
b-c-d-e-c-* 

Abbreviations:  

SLAN : Servers LAN 

ULAN : Users LAN  
OT: Operational Technology assets (PLCs, Power Transformers etc.) 

a.
 (*) denotes end of sequence 

B. Example 2-Multistep inference 

The second example illustrates how the engine performs a 
more general type of inference on the same data. This time the 
query under consideration is of the type “what is the probability 
of observing event x in the following n events?” 

To answer such a query, again we traverse the tree as 
dictated by the input sequence. From the reached node, we start 
a breadth-first-traversal of the tree which extends all possible 
following incident sequences until they reach a length equal to 
n. The estimated probability is the fraction of these sequences in 
which x is present. Fig. 2 presents this multi-step inference.  

Fig. 2. Multistep inference 

IV. RISK ΑND ECONOMETRIC MODELS INTEGRATION 

Up to now, the presented method deals only with 
information regarding events at the network level and can be 
utilized to study attack patterns on a variety of networks. 
Although the cyber range simulated network considers port 

infrastructure and pertinent network events, the engine outputs 
only probabilistic predictions on events at the network level; For 
example, based on the attack patterns observed so far, the engine 
may infer that there is a high probability of observing a Denial 
of Service event in a PLC. Since we focus on port 
infrastructures, this is not enough for a cybersecurity 
professional studying the attack or making real-time decisions 
on how to prioritize his/her responses. Additional information, 
concerning the functional importance of a device in the port 
operations pipeline plus the econometric impact of inflicted 
downtimes is needed. Towards this end, we have integrated the 
output of maritime-specific risk estimation and econometric 
models to the output of the engine.  

Fig. 3. Output of the Engine  

The Maritime Cyber Risk Analysis (MaCRA) [15] 
framework models the port infrastructure plus the list of cyber-
effects associated with any particular IT/OT asset in the port. 
This list of cyber-effects refers to the types of operational 
disruptions that could be inflicted by a successful cyber-attack 
(e.g. denial of service). The resulting risk estimation model 
accepts as inputs the proportion of available port IT and port OT 
infrastructures, i.e. two numbers from 0 to 1, and estimates risk 
–associated information including the number of delayed 
vessels, the average delay per vessel, equivalent downtime and 
an indicative recovery scenario. 

Fusing and displaying risk estimations with the predictions 
of the engine as shown in Fig. 3 provides a much more 
comprehensive consideration of probable future incidents plus 
their associated implications for the port operations pipeline. 
Thus, the output of the engine provides the network defender 
with a means to make educated decisions on how to prioritize 
his/her actions.  

 

 

Timestamp

Prediction 

origin 

(IDS/SIEM)

Description
Source 

Subnetwork

Destination 

Subnetwork

est. Probability 

of occurrence

Num Of 

Delayed 

Vessels

Average 

Delay/Vessel 

(days)

Downtime 

(days)

03/22/2022, 

10:43:03
IDS

ET POLICY DNS Update From External 

net
OT SLAN 0.5 - 1 48 1.45 1.5

03/22/2022, 

10:43:03
IDS

ET POLICY DNS Update From External 

net
ULAN SLAN 0.5 48 1.45 2.2

03/22/2022, 

10:43:03
SIEM

 Policy violation, DNS update from 

external server detected on DST_IP
ULAN SLAN 0.14 - 0.21 48 1.45 4.2

03/22/2022, 

10:43:03
SIEM

Modicon Quantum attack attempt - 

STOP
OT OT 0.43 -0.5 23 0.2 8.2

03/22/2022, 

10:43:03
SIEM Zerologon Attack detected ULAN SLAN 0.29 - 0.43 48 1.45 8.2



 

 

Fig. 4. The entire egine logic  

Apart from this, the estimations of the risk model are used to 
make higher level econometric predictions regarding the 
economic impact of the downtime of a specific port on other 
ports, for specific products and involved companies. Each line 
of the columns Num. of delayed vessels, Average Delay/Vessel 
and Downtime can be utilized by the considered econometric 
model and provide estimations of the economic impact of the 
disruption of the port under attack to other ports for any 
specified product type [16]. 

Thus, the interested stakeholder, e.g. the port involved or a 
specific company can utilize the combined output of predictions 
and associated risk assessments to consider, analyse and 
correlate attack patterns from a much broader perspective. We 
note however, that the database quantifying the econometric 
impact of each pertinent risk assessment and its integration with 
the engine is still under development. The entire engine pipeline 
for modelling, training and inference is depicted in Fig. 4. 

V. TECHNICAL DETAILS  

The Prediction Engine (PE) along with its supporting 
modules, i.e., the IDS and the SIEM are instantiated as self-
contained virtual machines (VMs), all of which are imported 
into DIATEAM’s Hybrid Network Simulation (HNS) cyber 
range platform [17], as depicted in Fig. 5. HNS is a commercial 
platform for simulation-based cyber training and testing. Access 
to each VM is provided via a remote-viewer functionality. In our 
topology, the Prediction Engine, the IDS and the SIEM are co-
located in the same network (Fig. 5).  

Fig. 5. Integration of the Prediction Engine along with its accompanying 
modules into an actual cyber range solution (HNS platform) 

The above-mentioned modules are configured with static IPs 
and communicate via a monitoring switch. Additionally, the 
topology includes a Visualization module and the MaCRA and 
Econometric models, linked to the PE (Fig. 5). Both the IDS and 
the SIEM continuously monitor the system’s assets e.g. a local 
area network (LAN) of servers and send any IDS alerts and 
SIEM detected incidents to the PE, via Syslog-ng mechanism 
[18] and RabbitMQ [19], respectively. The PE processes the 
detected alerts thereafter, using the algorithms described in 
Section III, to extract future events. The predicted future events 
are then combined with the information of MaCRA (downtime) 
and Econometric model (economic impact), to provide the 
holistic PE’s output i.e., the total risk estimation and its 
associated economic impact. Both the MaCRA and the 
Econometric model are implemented as static databases (DBs). 
As such, they are incorporated in the PE’s VM, where they can 
be queried accordingly. A more dynamic approach, where both 
models will be configurable by the end-user (parameterization) 
is left for future work. The final step of the prediction pipeline 
includes the propagation of the PE’s output to the Visualization 
module (again via Syslog-ng mechanism), where the predicted 
results can be presented in a user-friendly manner (dashboard, 
graphs, etc.). 

VI. CONCLUSION 

We have developed a tool aiding the cyber security 
professional in dealing with cyber-attacks targeting port 
infrastructures simulated in a virtual environment (i.e. a cyber 
range). The tool draws on and extends promising modelling 
approaches and provides probabilistic predictions on future 
events combined with associated risk and econometric 
assessments. It remains an open question, how this tool may be 
further developed for usage in a real-world setting. VLMMs 
have been shown to provide good predictions, but it is 
perceivable that complex real-world environments resulting in 
far more complicated and (intentional or not) obfuscated event 
sequences need further analysis and more refined approaches on 
how the aforementioned notion of an incident of interest may be 
defined. 
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